Random Subspace Two-dimensional LDA for Face Recognition

نویسنده

  • Garrett Bingham
چکیده

In this paper, a novel technique named random subspace two-dimensional LDA (RS-2DLDA) is developed for face recognition. This approach offers a number of improvements over the random subspace two-dimensional PCA (RS2DPCA) framework introduced by Nguyen et al. [5]. Firstly, the eigenvectors from 2DLDA have more discriminative power than those from 2DPCA, resulting in higher accuracy for the RS-2DLDA method over RS-2DPCA. Various distance metrics are evaluated, and a weighting scheme is developed to further boost accuracy. A series of experiments on the MORPH-II and ORL datasets are conducted to demonstrate the effectiveness of this approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A linear discriminant analysis framework based on random subspace for face recognition

Linear Discriminant Analysis (LDA) often suffers from the small sample size problem when dealing with high dimensional face data. Random subspace can effectively solve this problem by random sampling on face features. However, it remains a problem how to construct an optimal random subspace for discriminant analysis and perform the most efficient discriminant analysis on the constructed random ...

متن کامل

Subspace Linear Discriminant Analysis for Face Recognition

In this paper we describe a holistic face recognition method based on subspace Linear Dis-criminant Analysis (LDA). The method consists of two steps: rst we project the face image from the original vector space to a face subspace via Principal Component Analysis where the subspace dimension is carefully chosen, and then we use LDA to obtain a linear classiier in the subspace. The criterion we u...

متن کامل

An optimal symmetrical null space criterion of Fisher discriminant for feature extraction and recognition

Linear discriminant analysis (LDA) is one of the most effective feature extraction methods in statistical pattern recognition, which extracts the discriminant features by maximizing the so-called Fisher’s criterion that is defined as the ratio of between-class scatter matrix to within-class scatter matrix. However, classification of high-dimensional statistical data is usually not amenable to s...

متن کامل

Subspace LDA Methods for Solving the Small Sample Size Problem in Face Recognition

In face recognition, LDA often encounters the so-called small sample size (SSS) problem, also known as curse of dimensionality. This problem occurs when the dimensionality of the data is quite large in comparison to the number of available training images. One of the approaches for handling this situation is the subspace LDA. It is a two-stage framework: it first uses PCA-based method for dimen...

متن کامل

Regularization of LDA for Face Recognition: A Post-processing Approach

When applied to high-dimensional classification task such as face recognition, linear discriminant analysis (LDA) can extract two kinds of discriminant vectors, those in the null space (irregular) and those in the range space (regular) of the within-class scatter matrix. Recently, regularization techniques, which alleviate the over-fitting to the training set, have been used to further improve ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1711.00575  شماره 

صفحات  -

تاریخ انتشار 2017